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A B S T R A C T

In a previous study from the author and his co-worker, a constitutive model for isotropic, elastic perfectly-
plastic materials was developed using scalar, conjugate, stress/strain base pairs. These stress/strain base pairs
result from a Gram–Schmidt decomposition of the deformation gradient. A limitation of this prior work is that
we assumed the microscopic structures of such elastic–plastic materials would remain constant throughout
a deformation process, i.e., there would be no change in the resulting microstructural properties. Typically,
internal state variables are used to represent macroscopic manifestations of these microstructural properties.
In this paper, we incorporate internal state variables into our previously developed constitutive model, and as
a consequence, plastically-induced anisotropy shows up naturally in the developed model. These are, however,
different from the typically used internal state variables and are introduced only for this purpose.
1. Introduction

In recent years, a novel QR decomposition of the deformation
gradient has been proposed that has several advantages over the tra-
ditional polar decomposition. In this decomposition, the matrix of a
deformation gradient is decomposed into an orthogonal rotation 
and an upper-triangular matrix  , called the Laplace stretch (Freed
et al., 2019). Srinivasa (2012) showed that this decomposition is par-
ticularly useful from an experimental standpoint, as one can directly
and unambiguously measure the components of Laplace stretch in a
particular coordinate system, obtained through Laplace’s technique of
successive orthogonal projections. The QR kinematics have been fur-
ther explored by Freed and Srinivasa (2015), Rajagopal and Srinivasa
(2016), Freed and Zamani (2018), Paul and Freed (2020b), and Clayton
(2020). Based on this kinematics, constitutive models have been devel-
oped using scalar, conjugate, stress/strain, base pairs for 2-D planar
membranes (Freed, 2017), 3-D isotropic and anisotropic solids (Freed
et al., 2017), and elastic solids that exhibit Kelvin–Poisson–Poynting
effects (Freed and Zamani, 2019). The recent surge in the use of QR
decomposition can be attributed to its various advantages over the
traditional polar decomposition of the deformation gradient. To begin
with, the QR kinematics offer a simple framework that is easy to imple-
ment both from a computational and an experimental standpoint (see
detailed discussion in Srinivasa (2012)). Unlike the traditional the-
ory, the QR framework does not require computationally expensive
eigenvalue analysis to derive the invariants of the relevant kinematic

E-mail address: sandipan.paul@ce.iitr.ac.in.

quantities, used in different constitutive models (Mooney, 1940; Rivlin,
1948). The kinematic variable such as the stretch tensor  is easy
to visualize as opposed to its polar decomposition counterpart, 𝐔.
Moreover, the use of QR kinematics paved way to develop constitutive
models using scalar conjugate stress/strain base pairs. The scalar nature
of the stress and strain attributes significantly reduces the complexity in
analysis as well as computational cost. In a series of papers, Criscione
et al. (2000), Criscione (2004) have shown that the orthogonality of
relevant kinematic quantities plays an important role in reducing the
experimental error (see details in Section 2.2). The minimum covari-
ance between the strain attributes in the QR framework has been
shown to perform satisfactorily in this context (Freed, 2017); it is also
relatively easy to implement as compared to the proposed alternative
invariants of Criscione et al. (2001), Criscione and Hunter (2003).
These advantages have been explored in recent papers (Kazerooni
et al., 2019; Jiang et al., 2023) where a suitable experimental protocol,
including parameter identification, has been established to validate the
constitutive models based on a QR decomposition.

This kinematics was further extended to elastoplasticity by Freed
et al. (2019) when they decomposed Laplace stretch into its elastic and
plastic components, i.e.,  =  𝑒 𝑝, using the property that the set
of all upper-triangular matrices forms a group under matrix multiplica-
tion. Traditionally a multiplicative decomposition of the deformation
gradient 𝐅 = 𝐅𝑒 𝐅𝑝, first proposed by Bilby et al. (1957) and popularized
by Kröner (1959), Lee and Liu (1967) and Lee (1969), is used to
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describe the plastic behavior of materials in a finite deformation setting.
This decomposition assumes the existence of an intermediate, stress free
configuration obtained by a tangent map 𝐅𝑝 from the reference config-
uration of the body. Although this decomposition has been in use since
the 1960s, different aspects of this theory have often led to contentions
among researchers. In fact, Naghdi (1990) explained in his long review
paper that the only areas of agreement are the need for — developing
a suitable principle such as a flow rule or a strain hardening law,
defining an appropriate measure for the permanent deformation or, a
criterion to distinguish between the elastic and plastic regimes. The
disagreements over fundamental aspects of the decomposition, starting
from the existence of a stress free intermediate configuration (Green
and Naghdi, 1971; Casey and Naghdi, 1980) to the definition of an
appropriate plastic strain measure (Green and Naghdi, 1968; Nemat-
Nasser, 1979), are quite commonplace and have been categorically
documented by Naghdi (1990). Several attempts have been made to
propose new frameworks that do not directly invoke the idea of a 𝐅𝑒 𝐅𝑝
ecomposition but use alternative techniques to address some of these
ssues, e.g., Naghdi and Trapp (1974), Miehe (1998).

Although the framework proposed by Freed et al. (2019) does
ot resolve to fix all these theoretical issues,1 it is an important at-
empt in three key aspects– (i) the uniqueness of the elastic–plastic
ecomposition is ensured, (ii) it helps us understand the elastic–plastic
ecomposition in a simplified manner and hence, proves to be an
seful tool for experiments and, (iii) it leads to a much simpler con-
titutive model based on scalar conjugate stress/strain base pairs that
educes complexity in analysis as well as computational cost. The
raditional 𝐅𝑒 𝐅𝑝 decomposition assumes the existence of ‘‘a collection
f local configurations’’ that are related to the undeformed and de-
ormed configuration of the body through the tangent maps 𝐅𝑝 and
𝑒, respectively. These maps, in general, are not integrable and thus,
re not gradients of any deformation maps. Naturally, the lack of
ssociated deformation maps hinders one to understand (or visualize)
he corresponding deformation processes. This is where Freed et al.
2019)’s framework outperforms the well-established theory. In QR
ramework, the matrix of the deformation gradient is decomposed into
n orthogonal rotation tensor  that transforms the coordinate system
uch that the matrix of the deformation gradient takes on the form of
n upper-triangular matrix,  , called the Laplace stretch. The diagonal
erms of the Laplace stretch represent extensions of the sides of a
epresentative cube placed along the new base vectors whereas the
ff-diagonal terms represent the extent of shear in specific planes as
ill be discussed in Section 2. Imposing appropriate thermodynamic

estrictions, the Laplace stretch can be uniquely decomposed into its
lastic and plastic parts owing to the group property of a set of upper-
riangular matrices. In addition, this decomposition also leads to a
implified understanding of the underlying deformation processes. For
xample, the first diagonal term 𝑎 is related to its components through
= 𝑎𝑒 𝑎𝑝. The physical interpretation of this relation can be easily

nderstood from the deformation of a representative cube. When a
otal deformation (containing both elastic and plastic parts) is applied
n the cube, its side along one of the new base vectors is extended
y an amount of 𝑎. Now an elastic unloading will lead to a removal
f the elastic part of 𝑎, thus shortening the side by an amount of 𝑎𝑒;
he remaining part 𝑎𝑝 thus represents the permanent stretch on that
ide caused by a plastic deformation. This interpretation is missing
rom the traditional theory since the tangent maps 𝐅𝑒 and 𝐅𝑝 are not
ntegrable and thus, do not produce a deformation map. The physical
eaning of QR kinematics is particularly useful in plasticity because

f its ability to measure the kinematic quantities via experiments.

1 In fact, the QR framework fits well with the multiple natural configu-
rations framework, proposed by Rajagopal and Srinivasa (1998a) which also
assumes the existence of a stress free natural configuration obtained by an
instantaneous elastic unloading from the current configuration of the body.
2 
Although it has been proposed that the elastic and plastic parts of
a deformation gradient can, for example, be measured by perform-
ing electron backscatter diffraction (EBSD) (Jiang et al., 2016), such
propositions are flawed from a theoretical point of view because the
elastic and inelastic parts of a deformation gradient are not compatible,
unlike the total deformation gradient itself. Therefore, in general, it is
not possible to define a deformation map between the reference and
intermediate or the intermediate and current configurations. On the
other hand, using the same experimental techniques, one can measure
the plastic (or elastic) part of Laplace stretch  𝑝 (or  𝑒), at least
up to a homogeneous rotation field. A method to determine  𝑝 has
been delineated in Paul and Freed (2020a). Because of the advantages
that an elastic–plastic decomposition of Laplace stretch has over other
traditional decomposition, Paul and Freed (2021) developed a constitu-
tive model for isotropic, elastic perfectly-plastic materials using scalar,
conjugate, stress/strain, base pairs. The use of conjugate, stress/strain,
base pairs helps one to overcome an issue with the parametrization of a
material model owing to a strong covariance between the traditionally
used tensor invariants, as pointed out by Criscione (2004). Needless
to say, the elastic–plastic QR kinematics also entail the computational
advantages as mentioned earlier.

Although a constitutive model based on macroscopic kinematic
variables (e.g., the model developed in Paul and Freed (2021)) is able
to predict the overall response of a material, such a model will perform
poorly whenever the microstructure of a material evolves along a
path of deformation. To overcome this issue, one typically introduces
internal state variables to represent macroscopic manifestations of
its microstructural properties, cf. Coleman and Gurtin (1967), Rice
(1971), Dafalias (1987), and Jirásek and Rolshoven (2009). In this
paper, we extend our previously developed constitutive model by incor-
porating internal state variables into it. Typically, plastically-induced
anisotropy is represented through an evolving, tensor-valued, inter-
nal, state variable, e.g., Giessen (1989a,b, 1991). In our model, how-
ever, anisotropy enters into the constitutive model through certain
scalar-valued anisotropy parameters. To incorporate plastically-induced
anisotropy, it is sufficient that these parameters be considered as kine-
matic variables whose evolution equations are derived from an appro-
priate criterion.

This paper is organized as follows. In Section 2, QR kinematics and
the constitutive relations based upon this kinematics are reviewed, and
pertinent topics for subsequent developments are discussed in detail.
To incorporate an internal state variable into a constitutive model, one
needs to define an appropriate co-rotational rate for this variable. This
is discussed in Section 3. In Section 4, selected internal state variables
are incorporated into the authors’ constitutive model. The developed
model captures an evolving anisotropy during a plastic deformation
process. Two example problems have been considered to demonstrate
the procedure: (i) a Prager kinematic hardening with isotropic behavior
throughout the deformation, and (ii) an evolving anisotropy whose
contribution to the dissipation is assumed. Finally, the results are
summarized and the paper is drawn to conclusion. Evolution equations
governing our internal state variables are derived in the appendix.

2. Preliminaries

2.1. QR kinematics

Let us consider a simply-connected body  with a material particle
 in it. Let 𝐗 and 𝐱 denote the position vector of this particle in an
undeformed (reference) configuration of the body, i.e., 𝜅𝑟(), and its
deformed (current) configuration, viz., 𝜅𝑡(). The motion of a body is
efined as 𝐱(𝐗, 𝑡) = (𝐗, 𝑡). The deformation gradient 𝐅 is a homeomor-
hism that takes a tangent vector 𝑑𝐗 from the reference configuration
𝑟() and places it into the tangent space of the current configuration
𝑡(). The deformation gradient is written as

=
𝜕(𝐗, 𝑡)

. (1)

𝜕𝐗
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We apply a Gram–Schmidt procedure to the matrix of a deformation
gradient. This process decomposes it into an orthogonal rotation 
nd an upper-triangular matrix  called the Laplace stretch. Freed
t al. (2019) In this procedure, a particular coordinate direction and
ts adjoining coordinate plane need to be specified. Given such a
pecification, a new set of base vectors is obtained from these specified
ases though Laplace’s technique of successive orthogonal projections.
his coordinate direction and this coordinate plane are, in general, not
nown a priori, and as such, they can become a source for ambiguity
egarding a representation for Laplace stretch. To avoid this issue, we
ollow a strategy put forward by Paul et al. (2021) to re-index the
atrix of a deformation gradient 𝐅 through a permutation of its base

ectors, where selection of an appropriate permutation matrix is based
pon the current state of deformation in a body. The Gram–Schmidt
rocedure is then applied on this re-indexed deformation gradient  ,
esulting in

=  where [𝑖𝑗 ] =
⎡

⎢

⎢

⎣

𝑎 𝑎𝛾 𝑎𝛽
0 𝑏 𝑏𝛼
0 0 𝑐

⎤

⎥

⎥

⎦

. (2)

he inverse to the rotation tensor, i.e., 𝑇 , rotates an Eulerian set
f bases into a new set of bases {⃗𝑖}. The individual components of
aplace stretch have direct, physical meaning in this new set of bases
n contrast to that of the right stretch tensor 𝐔, obtained from a polar
ecomposition of the deformation gradient. Specifically, the diagonal
lements of Laplace stretch, i.e., 𝑎, 𝑏 and 𝑐, represent elongations of the
ides of a representative cube along the base vectors in this physical
rame of reference; whereas, the off-diagonal terms, viz., 𝑎𝛾, 𝑎𝛽 and 𝑏𝛼,
epresent the extents of shear acting across specific coordinate planes
long the directions of different base vectors (Srinivasa, 2012, § 2).
ecause of this, {⃗𝑖} are termed the bases for a physical frame of refer-
nce. The Laplace stretch can be further decomposed into two shearing
otions, followed by an extensional motion along the directions {⃗𝑖},
= 1, 2, 3, thereby resulting in an Iwasawa (1949) decomposition of

aplace stretch. This decomposition is given by

𝑖𝑗 ] =
⎡

⎢

⎢

⎣

𝑎 0 0
0 𝑏 0
0 0 𝑐

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝛬

⎡

⎢

⎢

⎣

1 0 𝛽
0 1 𝛼
0 0 1

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
 𝛼𝛽

⎡

⎢

⎢

⎣

1 𝛾 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
 𝛾

. (3)

he extensional matrix 𝛬 can be further decomposed into a dilatational
nd three modes of squeeze, i.e.,

𝛬𝑖𝑗 ] =
3
√

𝑎𝑏𝑐
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dilatation

⎡

⎢

⎢

⎣

3
√

𝑎∕𝑏 0 0
0 3

√

𝑏∕𝑎 0
0 0 1

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1-2 planar squeeze

×
⎡

⎢

⎢

⎣

1 0 0
0 3

√

𝑏∕𝑐 0
0 0 3

√

𝑐∕𝑏

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2-3 planar squeeze

⎡

⎢

⎢

⎣

3
√

𝑎∕𝑐 0 0
0 1 0
0 0 3

√

𝑐∕𝑎

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
3-1 planar squeeze

. (4)

Therefore, the Laplace stretch is essentially decomposed into seven
modes of deformation: one dilatation mode, three squeeze modes,
and three shear modes. Note that not all of these deformation modes
are independent. Specifically, the three squeeze modes are dependent
on each other. The decomposition of the Laplace stretch into differ-
ent modes is useful in defining the corresponding scalar, conjugate
stress/strain base pairs. The scalar nature of the kinematic and kinetic
variables helps in the ease of implementation and reduces compu-
tational efforts as compared to their tensorial counterparts or their
invariants, used in the traditional approach.

The QR kinematics have been extended to elasto-plasticity by Freed
et al. (2019). Using the property that the set of all invertible, upper-
triangular matrices form a group under multiplication, they decom-

posed the total Laplace stretch into its elastic and plastic parts, denoted o

3 
by  𝑒 and  𝑝, respectively. Needless to mention that both  𝑒 and  𝑝

are upper-triangular matrices. The components of these matrices are
given as

[ 𝑒
𝑖𝑗 ] =

⎡

⎢

⎢

⎣

𝑎𝑒 𝑎𝑒𝛾𝑒 𝑎𝑒𝛽𝑒

0 𝑏𝑒 𝑏𝑒𝛼𝑒

0 0 𝑐𝑒

⎤

⎥

⎥

⎦

and [ 𝑝
𝑖𝑗 ] =

⎡

⎢

⎢

⎣

𝑎𝑝 𝑎𝑝𝛾𝑝 𝑎𝑝𝛽𝑝

0 𝑏𝑝 𝑏𝑝𝛼𝑝

0 0 𝑐𝑝

⎤

⎥

⎥

⎦

. (5)

omponents of the total Laplace stretch  and its elastic and plastic
arts  𝑒 and  𝑝 are therefore related through

𝑎𝑒 = 𝑎∕𝑎𝑝; 𝛼𝑒 = 𝑏𝑝(𝛼 − 𝛼𝑝)∕𝑐𝑝;

𝑏𝑒 = 𝑏∕𝑏𝑝; 𝛽𝑒 = 𝑎𝑝
[

(𝛽 − 𝛽𝑝) − 𝛼𝑝(𝛾 − 𝛾𝑝)
]

∕𝑐𝑝;

𝑐𝑒 = 𝑐∕𝑐𝑝; 𝛾𝑒 = 𝑎𝑝(𝛾 − 𝛾𝑝)∕𝑏𝑝.

(6)

t is important to note that the deformation of a body in all six of its
egrees of freedom is completely specified by the components of Laplace
tretch, whereas the rotation  plays an important role in coordinate
ransformation. Unlike the traditional Kröner–Lee decomposition, here
decomposition of the rotation tensor into its elastic and plastic parts

s not necessary in order to obtain the elastic and plastic parts of the
aplace stretch (Freed et al., 2019). Only the latter is useful when con-
tructing constitutive models (Paul and Freed, 2021). It is instructive to
onsider the intermediate configuration of a body subjected only to a
lastic deformation. Such a configuration is, in general, non-Euclidean
nd is obtained through an elastic unloading of a deformed body. In
his configuration, the rotation tensor  is comprised only of its plastic
omponent, 𝑝.

To extend the QR kinematics to elasto-plasticity, a different ap-
roach was adopted by Ghosh and Srinivasa (2014). In this paper, a
R decomposition was performed on the plastic deformation gradient,
btained from a Kröner–Lee decomposition, i.e., 𝐅 = 𝐅𝑒 𝐅𝑝 with 𝐅𝑝 =
𝑝 𝑝. Since the components of the plastic Laplace stretch represent

he plastic deformation of a body in all six degrees of freedom,  𝑝

btained from both these approaches ought to be the same. Now
omparing the elastic–plastic QR decomposition with the traditional
= 𝐅𝑒 𝐅𝑝 and defining 𝑒 ..= 𝑝𝑇 , one can establish a relationship

etween Lee’s elastic deformation gradient, 𝐅𝑒 and the elastic Laplace
tretch  𝑒 as

= 𝐅𝑒 𝐅𝑝 =  𝑒 𝑝
⟹ 𝐅𝑒 = 𝑝 (

𝑒 𝑒) 𝑝𝑇 . (7)

hus, the total deformation gradient can be written as

= 𝑝𝑒 𝑒 𝑝. (8)

he relevant configurations and the tangent maps involved in QR
ecomposition and Kröner–Lee decomposition and their relationships
re shown in Fig. 1. Now let us consider a purely plastic deformation
here 𝐅 = 𝐅𝑝. Clearly, in this case, the elastic deformation gradient
𝑒 as well as 𝑒 and  𝑒 are all unit second-order tensors. Using this
ondition on eqn. (8), one can easily obtain 𝐅𝑝 = 𝑝 𝑝. Since the QR
ecomposition of a non-singular matrix is unique (i.e., since det(𝐅𝑝) ≠
), our plastic Laplace stretch and the corresponding plastic rotation
ensor is equivalent to the ones found from a Gram–Schmidt factoriza-
ion of the plastic deformation gradient 𝐅𝑝, proposed in Ghosh and
rinivasa (2014). Note that although the elastic–plastic decomposition
f Laplace stretch is unique owing to the group property of upper-
riangular matrices, the same cannot be said about the decomposition
𝑝 = 𝑝 𝑝. This is due to the fact that the plastic deformation gradient,
btained from a Kröner–Lee decomposition, is not unique. Moreover, it
s easy to understand that this non-uniqueness can be attributed to the
lastic rotation tensor 𝑝.

At this juncture, it is important to understand the physical meanings
hat 𝑝 and  𝑝 carry. If a body is subjected to an elastic unloading
rom its current (deformed) configuration 𝜅𝑡, it attains an intermediate
onfiguration 𝜅𝑝. Because  𝑝 can be obtained from a QR decomposition
f the matrix of 𝐅𝑝, the plastic deformation of a body in all six degrees

𝑝
f freedom is completely specified by the plastic Laplace stretch  in a
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Fig. 1. The configurations involved in Kröner–Lee decomposition and QR decomposition and the associated tangent maps.
certain set of bases that is determined by the rotation 𝑝. Let 𝜅̃𝑝 denote
another intermediate configuration in which the body is subjected to
only the plastic part of Laplace stretch  𝑝. The configurations 𝜅𝑝 and
𝜅̃𝑝 are related through the plastic rotation 𝑝. Clearly, like the total
rotation tensor , its plastic counterpart also takes part in a coordinate
transformation. In view of the physical interpretations of  𝑝 and 𝑝,
one can easily realize a correspondence between the intermediate
configuration 𝜅̃𝑝 and Mandel (1971, 1973) isoclinic configuration in
the sense that both these configurations represent the substructure
of the material (i.e., a macroscopic manifestation of the material mi-
crostructure). Investigation of the roles, played by the intermediate
configuration 𝜅̃𝑝 as a material substructure, is beyond the scope of this
paper and will be discussed in subsequent papers in connection with
studying plastic spin within our framework.

2.2. Constitutive model

Typically, constitutive models are developed using tensor invari-
ants whenever a polar decomposition of the deformation gradient is
adopted. In these models, the strain energy function𝑊 is often assumed
to be a function of the invariants of relevant kinematic quantities, for
example, the principal invariants of 𝐂, denoted by 𝐼1 and 𝐼2. However,
the widely used invariant theory is not without its drawbacks. Criscione
(2004) showed that a strong covariance exists between these tensor
invariants in the sense that the inner product of the response terms
(i.e., 𝜕𝑊 ∕𝜕𝐼1 or 𝜕𝑊 ∕𝜕𝐼2) turns out to be nearly equal to the product
of their individual magnitudes. This co-variance between the invariants
significantly magnifies the experimental error. Recently, a direct vari-
ance between the invariants has also been reported in the context of
fiber reinforced elastomers (Chatterjee et al., 2021). Clearly, the co-
variance between the invariants hinders one’s ability to parametrize
the material model from an experimenter’s standpoint and the orthog-
onality of a suitable strain measure has shown to be necessary to
reduce error propagation. To overcome this issue, alternative sets of
invariants (Criscione et al., 2000; Criscione, 2004) have been proposed
that restrict this covariance to a minimum. As mentioned by Srinivasa
(2012), the QR framework retains the necessary qualities (i.e., exhibit
minimum covariance between kinematic and response terms) from an
experimental standpoint while it is simpler and easy to implement.
Keeping this in mind, Freed et al. (2016, 2017), Freed (2017) developed
constitutive models using scalar, conjugate, stress/strain, base pairs for
isotropic and anisotropic elastic materials. In these works, a constitutive
4 
formulation was derived by deconstructing the stress power at a mate-
rial point into its different modes of deformation. For the total Laplace
stretch, in view of Eqs. (3) and (4), one can define the strain attributes
as

𝛿 = 1
3 ln(𝑎𝑏𝑐); 𝜀1 =

1
3 ln(𝑎∕𝑏); 𝜀2 =

1
3 ln(𝑏∕𝑐); 𝜀3 =

1
3 ln(𝑐∕𝑎);

𝛾1 = 𝛼; 𝛾2 = 𝛽; 𝛾3 = 𝛾
(9)

where 𝛿 is the volumetric strain, and 𝜀𝑖 and 𝛾𝑖 are the squeeze and shear
strains, respectively.

The stress power per unit reference volume at a material point can
be written as

𝑊̇ = tr(𝐒 𝐄̇) = 𝐽 tr(𝐓𝐋) (10)

where 𝐒 and 𝐓 are the symmetric, second Piola–Kirchhoff and Cauchy
stress, respectively and 𝐄 is the Green strain. 𝐽 = det(𝐅) denotes the
Jacobian of the deformation map. Let us now define a velocity gradient
associated with the Laplace stretch as  ..= ̇  −1. A routine calculation
using Eq. (2) shows that the velocity gradient 𝐋 ..= 𝐅̇ 𝐅−1 is related to
 through

𝐋 = ̇𝑇 +𝑇 . (11)

Needless to say that the spin tensor ̇𝑇 is anti-symmetric. From the
second part of Eq. (10), the stress power can now be written as

𝑊̇ = 𝐽 tr(𝐓𝐋) = 𝐽 tr
(

𝐓 (̇𝑇 +𝑇 )
)

= 𝐽 tr
(

𝐓𝑇 ) = tr ( )

(12)

where  is the Kirchhoff stress in our physical frame of reference, which
is related to the Cauchy stress 𝐓 through the relation  ..= 𝐽 𝑇 𝐓.

In terms of the strain attributes defined in Eq. (9) and their ther-
modynamic conjugates (see Freed (2017) (Freed, 2017, § 3,4) for a
detailed derivation of the conjugate stress/strain base pairs), the stress
power can be expressed as

𝑊̇ = 𝜋𝛿̇ +
3
∑

𝑖=1

(

𝜎𝑖𝜀̇𝑖 + 𝜏𝑖𝛾̇𝑖
)

(13)

where stresses 𝜋, 𝜎𝑖 and 𝜏𝑖 are the respective thermodynamic conjugates
to strains 𝛿, 𝜀𝑖 and 𝛾𝑖. In terms of the stress components from , these
stress attributes can be written as

𝜋 = 11 + 22 + 33; 𝜎1 = 11 − 22; 𝜎2 = 22 − 33; 𝜎3 = 33 − 11;

𝜏 = 𝑏 ; 𝜏 = 𝑎 ; 𝜏 = 𝑎 − 𝛼 𝑎
1 𝑐 12 2 𝑐 13 3 𝑏 12 𝑐 13
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(14)

where 𝜋 is a pressure, 𝜎𝑖 is the ith normal stress difference, and 𝜏𝑖 is
the ith shear stress, 𝑖 = 1, 2, 3. Note that out of these seven modes of
deformation, only six are independent. Specifically, a coupling exists
between the three squeeze modes that leads to 𝜀3 = −(𝜀1 + 𝜀2) and
3 = −(𝜎1 + 𝜎2). Although such a coupling between the squeeze
odes is not desirable, it seems inevitable in the present theory. In

act, as mentioned earlier, covariance exists between the invariants
hen a traditional constitutive assumption is used. In the alternative

onstitutive models, developed to address this particular issue such
s Criscione et al. (2000), Criscione and Hunter (2003), Criscione
2004), a covariance is also present among the kinematic variables, but
t is restricted to a minimum. The same is applicable for the proposed
onstitutive model as pointed out by Freed (2017).
Proof of frame invariance: Let us consider two observers with refer-

nce frame  and ∗ measuring the deformation of a body. We further
ssume that the frames  and ∗ coincides with each other at a time
nstant when the configuration of the body is the reference config-
ration. Therefore, the position vector of a particle in the reference
onfiguration of the body is measured as 𝐗 from both the reference
rames. Now the motion of the body, observed from  and ∗ are
elated through
∗(𝐗, 𝑡∗) = 𝐐(𝑡) (𝐗, 𝑡) + 𝐝(𝑡) (15)

here 𝐐(𝑡) 𝝐 Orth+, 𝑡∗ = 𝑡−𝑎 with 𝐐(0) = 𝐈 and 𝐝(0) = 0. From eqns. (1)
nd (15), it is obvious that 𝐅∗ = 𝐐𝐅. In Section 2, the Laplace stretch

was obtained from a Gram–Schmidt factorization of the deformation
radient 𝐅. Alternatively, the components of Laplace stretch in a given
oordinate system can also be found from a Cholesky factorization of
he right Cauchy–Green tensor 𝐂 ..= 𝐅𝑇𝐅 (Srinivasa, 2012) as

𝑖𝑗 ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

𝐶11
𝐶12
11

𝐶13
11

0
√

𝐶22 − 2
12

𝐶23 −12 13
22

0 0
√

𝐶33 − 2
13 − 2

23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (16)

he group property of the set of upper-triangular matrices ensures that
his decomposition is unique for a given right Cauchy–green tensor,
. From the relation between the deformation gradients 𝐅 and 𝐅∗ and

he definition of the right Cauchy–Green tensor, one can easily observe
hat the right Cauchy–Green tensors are the same when measured in
he reference frames  and ∗, i.e., 𝐂∗ = 𝐂. In view of eqn. (16), it
s obvious that the same relationship holds for the Laplace stretches,
.e.,  ∗ =  . The strain attributes defined in Eq. (9), being simple
lgebraic functions of the components of the Laplace stretch, are also
oing to be the same when measured from the two reference frames,
.e., 𝛿∗ = 𝛿, 𝜀∗𝑖 = 𝜀𝑖 and 𝛾∗𝑖 = 𝛾𝑖, 𝑖 = 1, 2, 3. Since the strain attributes are
calar quantities, they are frame-invariant.

To show the frame invariance of the stress attributes, we shall first
ssume that the traction vector is objective. This assumption results in
he frame invariance of the Cauchy stress tensor, i.e., 𝐓∗ = 𝐐𝐓𝐐𝑇 .
ince, 𝐅∗ = 𝐐𝐅, it can be easily shown that the corresponding rotation
ensors are related through ∗ = 𝐐. Therefore, the Kirchhoff stress
n our physical frame of reference measured from ∗ can be written as

∗ = 𝐽 ∗∗ 𝐓∗ ∗ = 𝐽 (𝐐)𝑇 (𝐐𝐓𝐐𝑇 ) (𝐐) = 𝐽  𝐓 =  . (17)

rom the definition of the stress attributes in eqn. (14), one can write
∗ = 𝜋, 𝜎∗𝑖 = 𝜎𝑖 and 𝜏∗𝑖 = 𝜏𝑖. Since the stress attributes are scalars, they
re frame invariant.

A relationship between these stress and strain attributes can be
stablished from a thermodynamic consideration. Needless to say that
uch relationships depend upon the behavior exhibited by the material
nder consideration. For convenience in notation, let us define three
 (

5 
ists of variables consisting of the stress and strain attributes and their
ates as


..= { 𝛿 𝜀1 𝜀2 𝜀3 𝛾1 𝛾2 𝛾3 }; (18a)

𝑙̇ ..= { 𝛿̇ 𝜀̇1 𝜀̇2 𝜀̇3 𝛾̇1 𝛾̇2 𝛾̇3 }; (18b)

𝑙 = { 𝜋 𝜎1 𝜎2 𝜎3 𝜏1 𝜏2 𝜏3 }. (18c)

Similar to Eq. (9), for an elastic–plastic material, one can define the
elastic and plastic strain attributes as

𝛿𝑒 = 1
3
ln(𝑎𝑒𝑏𝑒𝑐𝑒); 𝜀𝑒1 =

1
3
ln(𝑎𝑒∕𝑏𝑒); 𝜀𝑒2 =

1
3
ln(𝑏𝑒∕𝑐𝑒); 𝜀𝑒3 =

1
3
ln(𝑐𝑒∕𝑎𝑒);

𝛾𝑒1 = 𝛼𝑒; 𝛾𝑒2 = 𝛽𝑒; 𝛾𝑒3 = 𝛾𝑒

(19 a)

and

𝛿𝑝 = 1
3
ln(𝑎𝑝𝑏𝑝𝑐𝑝); 𝜀𝑝1 =

1
3
ln(𝑎𝑝∕𝑏𝑝); 𝜀𝑝2 =

1
3
ln(𝑏𝑝∕𝑐𝑝); 𝜀𝑝3 =

1
3
ln(𝑎𝑝∕𝑐𝑝);

𝛾𝑝1 = 𝛼𝑝; 𝛾𝑝2 = 𝛽𝑝; 𝛾𝑝3 = 𝛾𝑝.

(19 b)

These elastic and plastic strain attributes are related to the total strain
ttributes via
𝛿 = 𝛿𝑒 + 𝛿𝑝,

1 = 𝜀𝑒1 + 𝜀
𝑝
1,

2 = 𝜀𝑒2 + 𝜀
𝑝
2,

3 = 𝜀𝑒3 + 𝜀
𝑝
3,

𝛾1 = (𝑐𝑝∕𝑏𝑝) 𝛾𝑒1 + 𝛾
𝑝
1 ,

𝛾2 = (𝑐𝑝∕𝑎𝑝) 𝛾𝑒2 + 𝛾
𝑝
2 + 𝛾𝑝1 (𝛾3 − 𝛾

𝑝
3 ),

𝛾3 = (𝑏𝑝∕𝑎𝑝) 𝛾𝑒3 + 𝛾
𝑝
3 .

(20)

or a convenience in notation, let us define a list of variables 𝑙 𝑝

onsisting of the plastic strain attributes. This list of variables is defined
s

 𝑝 ..= { 𝛿𝑝 𝜀𝑝1 𝜀𝑝2 𝜀𝑝3 𝛾𝑝1 𝛾𝑝2 𝛾𝑝3 }. (21)

It is interesting to note that in this framework, an anisotropic
aterial response does not enter into the constitutive model directly

hrough the material parameters (i.e., through symmetry of the stiffness
r compliance matrix). Instead, the anisotropy is enfolded in the en-
oding/decoding map that relates components of the velocity gradient

..= ̇  −1 with our strain rate attributes, and components of the
irchhoff stress  with our stress attributes. For an anisotropic elastic
aterials, a relationship between the components of  and the strain

ate attributes is given as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛿̇
𝜀̇1
𝜀̇2
𝛾̇1
𝛾̇2
𝛾̇3

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣𝑤∕3𝑢 𝑢𝑤∕3𝑣 𝑢𝑣∕3𝑤 0 0 0
𝑣𝑤∕3𝑢 −𝑢𝑤∕3𝑣 0 0 0 0

0 𝑢𝑤∕3𝑣 −𝑢𝑣∕3𝑤 0 0 0
0 0 0 𝑐∕𝑏 0 0
0 0 0 0 𝑐∕𝑎 𝑏𝛾1∕𝑎
0 0 0 0 0 𝑏∕𝑎

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

11
22
33
23
13
12

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(22)

hereas the stress attributes are related to the components of  via
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜋
𝜎1
𝜎2
𝜏1
𝜏2
𝜏3

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢∕𝑣𝑤 𝑣∕𝑢𝑤 𝑤∕𝑢𝑣 0 0 0
𝑢∕𝑣𝑤 −𝑣∕𝑢𝑤 0 0 0 0
0 𝑣∕𝑢𝑤 −𝑤∕𝑢𝑣 0 0 0
0 0 0 𝑏∕𝑐 0 0
0 0 0 0 𝑎∕𝑐 0
0 0 0 0 −𝑎𝛾1∕𝑐 𝑎∕𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

11
22
33
23
13
12

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(23)

where 𝑢, 𝑣 and 𝑤 are anisotropy parameters representing the strength
on anisotropy along the directions ⃗1, ⃗2 and ⃗3, respectively, relative
o the other directions. For an isotropic material, each of these parame-
ers equals one. The reader is referred to Freed et al. (2016) and Freed

2017) for a detailed derivation of Eqs. (22) and (23).
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3. Internal state variables and their co-rotational rates

While constructing constitutive models for elastic–plastic materials,
it is a common practice to consider only quantities representing the
macroscopic deformation of a body, e.g., the Laplace stretch  and its
plastic part  𝑝 as kinematic variables, along with their corresponding
work conjugates. However, in these models, it is not possible to keep
track of an evolution of the underlying microstructural properties of
a material with these kinematic variables. Therefore, although these
models work well for isotropic materials, they are unable to capture
material responses that exhibit evolving microstructural properties,
such as plastically-induced anisotropy. In order to resolve this issue,
internal state variables are typically used that act as a macroscopic
manifestation of these microstructural features. These internal variables
can be scalars, vectors or tensors, and can represent both kinematic and
kinetic variables, such as a back stress, orientation of the lattice vectors,
etc.

Let 𝐚𝑖, 𝑖 = 1, 2, ..., 𝑛 denote a set of 𝑛 number of internal variables
in the current configuration 𝜅𝑡. We assume that these internal state
variables follow a standard pull back or push forward operation since
the base vectors are related through the associated tangent maps.
Before going into a detailed discussion on how these internal variables
are incorporated in our framework, let us first discuss their physical
significance using a traditional Kröner–Lee decomposition. Upon elastic
unloading, this set of variables is pulled back into configuration 𝜅𝑝 and
is denoted by 𝐀𝑖. Sets 𝐚𝑖 and 𝐀𝑖 are related through an inverse of the
elastic deformation gradient and its transpose. However, the specific
relation depends on the nature of a particular internal variable. For
instance, if 𝐚𝑖 is a tensor-valued internal variable, then 𝐀𝑖 can be ob-
tained as 𝐀𝑖 = det(𝐅𝑒)𝐅𝑒−1 𝐚𝑖 𝐅𝑒

−𝑇 . Because 𝐀𝑖 represents a macroscopic
manifestation of the microstructural changes, the material response
must also depend on these internal variables. Here we first consider
the internal variable to be a tensor-valued kinematic variable since
we derive the constitutive model by allowing the kinematic variables
(i.e., the strain rate attributes) to vary (see Section 4). Internal state
variable of kinetic nature are considered whenever the kinetic variables
(i.e., the stress attributes) are allowed to vary keeping the kinematic
variables fixed. Since the kinematic and kinetic internal variables are
work-conjugate to each other, the nature of the internal state variable
does not pose any difficulty in deriving the constitutive model. Never-
theless one should be careful in using the right internal state variable
in their derivation of a constitutive model.

It is well-known that the laws of thermodynamics are not sufficient
to specify the response of an elastic–plastic material. Additionally, one
needs to stipulate a more stringent criterion such as maximum plastic
dissipation, maximum plastic work, Drucker’s stability postulate, etc. In
their constitutive model for isotropic, elastic–plastic materials, Paul and
Freed (2021) used a maximum rate of dissipation criterion developed
by Rajagopal and Srinivasa (1998a,b). This criterion is a generalized
version of Onsager’s minimum rate of dissipation criterion (Onsager,
1931) and Ziegler’s normality rule (Ziegler, 1963) (cf. Rajagopal and
Srinivasa (2004)). It is worth noting that although the maximum rate
of dissipation criterion is applicable to a wide class of materials, this
principle, along with the other criteria mentioned above, is not as
fundamental as the laws of thermodynamics. Nevertheless, the use of
such a criterion is ubiquitous in plasticity literature.

In this framework, the response of an elastic–plastic material is
specified through constitutive assumptions arising from two functions:
a stored energy function (or Helmholtz potential function)2 denoted

2 This thermodynamic potential is often referred to as the Helmholtz free
nergy per unit mass or free energy density (Noll, 1974) or specific free
nergy (Truesdell and Noll, 1992) and is related to the internal energy 𝜀,
ntropy 𝜂 and temperature 𝜃 through a Legendre transformation viz., 𝜓 =
− 𝜂 𝜃.
 i

6 
as 𝜓 , and a rate of dissipation function denoted as 𝜉. The Helmholtz
potential function specifies the elastic response of a body, measured
from a fixed natural configuration 𝜅̃𝑝 whereas the evolution of this
natural configuration caused by microstructural change is specified
through a rate of dissipation function. They further assumed that the
Helmholtz potential is a function of the total Laplace stretch  and
its plastic part  𝑝. On the other hand, the rate of dissipation function
was assumed to depend on the plastic Laplace stretch  𝑝 and its rate
̇ 𝑝. Note that this model was developed for an isotropic material that
exhibits an elastic perfectly-plastic behavior.

In order to incorporate material behavior induced by microstruc-
tural changes, one needs to also consider internal state variables as
arguments of the Helmholtz potential 𝜓 and the rate of dissipation
function 𝜉. One particular material behavior caused by microstructural
change is that of plastically-induced anisotropy. This anisotropy is ex-
hibited at a microstructural level, and is different from the macroscopic
behavior exhibited by an initially anisotropic material. The anisotropy
of a material enters into our constitutive model through a particular
mapping between the kinematic (e.g., components of Laplace stretch)
and kinetic (e.g., components of the Kirchhoff stress tensor, pulled back
into our physical frame of reference) quantities and their corresponding
strain and stress attributes (see Section 2.2). A plastically-induced (and
thus, evolving) anisotropy can be incorporated by considering certain
parameters of these maps as variables.

Because the internal state variables used in our constitutive con-
struction of an elastic–plastic material reflect a changing microstruc-
ture, an evolution equation must be specified for each 𝐀𝑖 in order to
keep track of its evolution, plus any change in orientation caused by
plastic deformation. Specifically, an appropriate rate for each internal
state variable must be specified. Recall that the physical representation
of configuration 𝜅̃𝑝 is that of the substructure of a material, and hence,
all constitutive relations are to be formulated in this configuration. It
is also worth noting that an infinitesimal fiber in the configuration 𝜅𝑝
is obtained by employing Lee’s plastic deformation gradient, 𝐅𝑝 on an
infinitesimal fiber in the reference configuration of the body. Moreover,
it has been shown in Section 2 that 𝐅𝑝 is related to the plastic Laplace
stretch via 𝐅𝑝 = 𝑝 𝑝 and this decomposition is unique. Therefore,
considering a tensorial internal state variable, it must be pulled back
into this configuration through the relation 𝑖 = 𝑝𝑇 𝐀𝑖𝑝. When
expressed in the set of bases {⃗𝑖}, it is reasonable to assume that
the matrix of 𝑖 will be a full matrix. We further assume that this

atrix has a non-zero determinant, i.e., det(𝑖) ≠ 0. Under these
onditions, one can perform a Gram–Schmidt procedure on the matrix
f 𝑖 resulting in 3

𝑖 = 𝑖  𝑖 (24)

here 𝑖 is an orthogonal matrix, and  𝑖 is an upper-triangular ma-
rix. Clearly, the upper-triangular matrix  𝑖 represents the
‘rotation-free’’ part of internal state variable 𝑖 and its components
re given in a new set of bases obtained through a rotation of the set
f bases {⃗𝑖} by 𝑖 . The assumption of a non-zero determinant for the
atrix of 𝑖 ensures that its decomposition in Eq. (24) is unique. For

he time being, we focus on the rotation part of the internal variable.
evertheless, its counterpart  𝑖 plays an essential role in constitutive

ormulation, and will be discussed later.
From the physical significance of a Gram–Schmidt decomposition,

s discussed in Section 2.1, it is apparent that orthogonal tensor 𝑖

epresents a change in the orientation of internal state variable 𝑖
ith respect to the bases of space 𝜅̃𝑝, and hence, the substructure of

his material. Therefore, a spin tensor 𝜴𝑝 defined as 𝜴𝑝 ..= ̇𝑖 𝑖
𝑇

3 Note that this decomposition is specific to the QR framework. In case of
traditional framework based on a polar decomposition of the deformation

radient, typically a full second-order tensor form of the internal variable or
ts invariants are used for constitutive formulation.
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represents the spin of the structural internal variable 𝑖 taken with
respect to its substructure. This spin tensor can now be defined as
the plastic spin corresponding to the internal structure variable 𝑖, in
ccordance with the terminology of Dafalias (1998).

Although it is sufficient for the plastic strain-rate attributes to use
nly a simple time derivative of the pertinent kinematic variables in
heir definitions, the same is not true for the internal state variables.
t is evident from the discussion on QR decomposition in Section 2.1
hat the matrix of 𝑖 takes on the form of an upper-triangular matrix
𝑖 in a new set of base vectors rotated from the substructure (i.e., the

configuration 𝜅̃𝑝) by 𝑖 . Therefore, we must work with a suitable
objective rate of the ‘‘rotation-free’’ part of the internal state variable
 𝑖 with respect to the configuration 𝜅̃𝑝. Since  𝑖 is defined in a
co-ordinate system rotated by 𝑖 , it is appropriate to introduce a Lie
derivative (Marsden and Hughes, 2012) of the form

𝜑𝑝 [
𝑖 ] = 𝑖

[ 𝑑
𝑑𝑡

(

𝑖
−1

 𝑖 𝑖
−𝑇 )

𝑖
𝑇
]

. (25)

t is worth noting that Eq. (25) is quite similar to the Green–Naghdi
ate of the Kirchhoff stress. In fact, 𝜑𝑝 [ 𝑖 ] is a particularization of
he Green–Naghdi rate for appropriate tensor fields in the sense of Simo
nd Marsden (1984). Simplifying Eq. (25), the co-rotational rate of  𝑖

ith respect to the plastic spin 𝜴𝑝 can be written as
◦ 𝑖 = ̇ 𝑖 −𝜴𝑝 𝑖 + 𝑖 𝜴𝑝. (26)

ince Lie derivatives are, by definition, frame-indifferent, the rate
◦
 𝑖

an now be used in our constitutive formulation. Note that unlike the
ther kinematic variables,

◦
 𝑖 is a full matrix. This causes an in-

vitable impediment to utilize the full potential of an upper-triangular
ecomposition.

. Incorporation into constitutive model

In this section, we focus on developing a constitutive model for
lastic–plastic materials that captures plastically-induced anisotropy
s well as a general, tensor-valued, kinematic, internal variable. The
uestion of which kinematic variables (plastic strain rate attributes, or
he objective rate of an internal state variable) are to be used depends
pon the configuration in which the constitutive relations are formu-
ated. From the discussions in Sections 3 and 2.1, it is quite evident
hat the configuration 𝜅̃𝑝 is of utmost importance in our framework,

mainly for two reasons: (i) the components of the plastic Laplace stretch
are measured in this configuration, and (ii) physically it represents a
macroscopic manifestation of the material substructure. Recall that un-
like the plastic deformation gradient, 𝐅𝑝, arising from a multiplicative
decomposition of the deformation gradient, the plastic Laplace stretch
stems from a decomposition of the ‘‘rotation-free’’ Laplace stretch  .

oreover, the plastic Laplace stretch is measured in the configura-
ion 𝜅̃𝑝 which implies that the measured plastic strain rate attributes
dentically co-rotate with the substructure of a material. Therefore,
t is reasonable to define the plastic strain rate attributes through an
ppropriate encoding/decoding map in a similar fashion as in Eq. (22).
he plastic strain rate attributes are defined as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛿̇𝑝

𝜀̇𝑝1
𝜀̇𝑝2
𝛾̇𝑝1
𝛾̇𝑝2
𝛾̇𝑝3

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣𝑤∕3𝑢 𝑢𝑤∕3𝑣 𝑢𝑣∕3𝑤 0 0 0
𝑣𝑤∕3𝑢 −𝑢𝑤∕3𝑣 0 0 0 0

0 𝑢𝑤∕3𝑣 −𝑢𝑣∕3𝑤 0 0 0
0 0 0 𝑐𝑝∕𝑏𝑝 0 0
0 0 0 0 𝑐𝑝∕𝑎𝑝 𝑏𝑝𝛾𝑝1∕𝑎

𝑝

0 0 0 0 0 𝑏𝑝∕𝑎𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑝11
𝑝22
𝑝33
𝑝23
𝑝13
𝑝12

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(27)

with

𝑙 ..= { 𝛿̇𝑝 𝜀̇𝑝 𝜀̇𝑝 𝜀̇𝑝 𝛾̇𝑝 𝛾̇𝑝 𝛾̇𝑝 } (28)
̇ 𝑝 1 2 3 1 2 3

7 
where 𝑝 ..= ̇ 𝑝 𝑝−1 and 𝜀̇𝑝3 = −(𝜀̇𝑝1 + 𝜀̇𝑝2). For convenience, let us
replace the parameters 𝑢, 𝑣 and 𝑤 with 𝑛𝑗 , 𝑗 = 1, 2, 3, defined as
𝑛1 ..= 𝑢∕𝑣𝑤, 𝑛2 ..= 𝑣∕𝑢𝑤 and 𝑛3 ..= 𝑤∕𝑢𝑣. Note that although Eqs. (18a),
(18b), (18c), (20) and (21) are still valid for the case of anisotropic
materials, definitions of the total strain attributes and their plastic
counterparts need to be revised. While determining the total and plastic
strain attributes by integrating the strain rates, one must keep in mind
that the parameters 𝑢, 𝑣 and 𝑤 (or alternatively, 𝑛𝑗 , 𝑗 = 1, 2, 3) must
be considered as variables here in order to capture the development of
induced anisotropy.

The upper-triangular matrix  𝑖 physically represents the current
state of the internal variable at a particular time instant. Moreover,
due to its upper-triangular nature, it is possible to decompose this
matrix similar to the decomposition of Laplace stretch in Eqs. (3) and
(4) and define a list of variables containing seven scalar variables,
each corresponding to a separate mode of deformation of the material
substructure, that collectively represent an internal state variable in a
rotated coordinate frame with respect to the material substructure. This
list of variables consisting of these scalar variables is given as

𝑙𝑖
= { 𝛿𝑖 𝜀𝑖

1 𝜀𝑖
2 𝜀𝑖

3 𝛾𝑖
1 𝛾𝑖

2 𝛾𝑖
3 } (29)

where 𝛿𝑖 , 𝜀𝑖
𝑗 and 𝛾𝑖

𝑗 , 𝑗 = 1, 2, 3, represent attributes of the internal
state variable 𝑖 that correspond with dilatation, squeeze and shear of
the substructure, respectively. Despite the physical meaning of compo-
nents in list 𝑙𝑖

, and its congruence with the current theory, these scalar
variables cannot be used in the constitutive formulation. Specifically,
because there is no reason for the co-rotational rate of an internal
state variable

◦
 𝑖 to be upper-triangular, and as such, it cannot be

decomposed into the different modes of deformation, and thus, cannot
be expressed by such a collection of scalar variables. Therefore, one
must deal with tensorial variables (such as

◦
 𝑖 ) when it comes to

orking with tensor valued, internal, state variables like 𝑖, instead
f a simple time derivative of the collection of scalar variables listed in
𝑖

. This is a major consequence of using the co-rotational rate of an
nternal state variable in our theory.

Now we proceed to derive the evolution equations for the plastic
train rate attributes 𝑙̇ 𝑝 , the anisotropy parameters 𝑛𝑗 , and the internal

state variables 𝑖. Here, in addition to the laws of thermodynamics,
e adopt a maximum rate of dissipation criterion. In our framework,

he configuration 𝜅̃𝑝 acts as a natural configuration from which the
lastic response of the body is measured. The natural configuration
tself evolves with a dissipative, plastic deformation process in the sense
hat the elastic unloading of a body from its current configuration leads
t to occupy different natural configurations at different time instants
henever microstructural changes in the body (e.g., dislocation move-
ents) are involved. Therefore, the response of a body can be described

s a family of elastic responses measured from a set of evolving natural
onfigurations. We assume that for each natural configuration there
xists a non-null elastic domain, i.e., for a fixed microstructure (or

natural configuration) and a given Green elastic strain 𝐄 measured
from the reference configuration, the only admissible value for the
inelastic velocity gradient 𝑝 would be zero. In other words, the inverse
image of  = 𝟎 would be a non-empty elastic domain for a given
microstructure and Green elastic strain Rajagopal and Srinivasa (1998b,
§ II.1). Therefore, we admit two functions prior to applying a maximum
rate of dissipation criterion: (i) a Helmholtz potential function 𝜓 from
which the elastic response of a body for a fixed natural configuration
is derived, and (ii) a dissipation function 𝜉 representing the energy
dissipated during a plastic deformation process, i.e., an evolution of
the natural configuration 𝜅̃𝑝. For the sake of generality, throughout the
constitutive formulation, we will assume that the material response is
anisotropic.

Because the elastic response of a body depends upon the deforma-
tion of that body measured from its undeformed configuration 𝜅𝑟 and

its fixed natural configuration 𝜅̃𝑝, it is reasonable to assume that the
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Helmholtz potential function has the form

𝜓 = 𝜓( , 𝑝, 𝑛𝑗 ) = 𝜓̂(𝑙 , 𝑙 𝑝 , 𝑛𝑗 ) (30)

where 𝑛̇𝑗 = 𝑛𝑗 , 𝑗 = 1, 2, 3. Note that we have not considered any internal
tate variables 𝑖 in the argument of 𝜓 , because the internal state
ariables only associate with the plastic deformation of a body. Now
he elastic domain of the material for a fixed natural configuration is
haracterized by
𝑝 = 𝟎 ⟹ 𝛿̇𝑝 = 𝜀̇𝑝𝑗 = 𝛾̇𝑝𝑗 = 0. (31)

he rate of dissipation function can be determined from an isothermal
nergy balance equation. If  𝑖 denotes the kinetic conjugate4 of the
nternal state variable 𝑖, then the rate of dissipation can be defined
s
..= 𝑊̇ − 𝜌0𝜓̇ −  𝑖 ∶

◦
 𝑖 ≥ 0 (32)

here for any two tensors 𝐀 and 𝐁, 𝐀 ∶ 𝐁 denotes the scalar dot
roduct such that 𝐀 ∶ 𝐁 = 𝐴𝑖𝑗 𝐵𝑖𝑗 . An assumption of non-negativity
f 𝜉 ensures that the Clausius–Duhem inequality is identically satisfied.
rom Eq. (32), it is evident that the dissipation function has the
unctional form of

= 𝜉
(

 𝑝, ̇ 𝑝, 𝑛𝑗 ,
◦
 𝑖

)

= 𝜉
(

𝛿𝑝, 𝜀𝑝𝑗 , 𝛾
𝑝
𝑗 , 𝛿̇

𝑝, 𝜀̇𝑝𝑗 , 𝛾̇
𝑝
𝑗 , 𝑛𝑗 ,

◦
 𝑖

)

. (33)

Note that unlike the Helmholtz potential function 𝜓 , the argument of
the dissipation rate 𝜉 contains both scalar as well as tensorial kinematic
variables owing to the nature of the co-rotation rate of the internal
state variables. Moreover, the Helmholtz potential function and the
rate of dissipation function both explicitly and implicitly depend on the
anisotropy parameters 𝑛𝑗 , as they are directly related to the dilatational
and squeeze strain-rate attributes. Now invoking Eq. (30) into Eq. (32),
we obtain
(

𝜋 − 𝜌0
𝜕𝜓̂
𝜕𝛿

)

𝛿̇ +
3
∑

𝑗=1

[(

𝜎𝑗 − 𝜌0
𝜕𝜓̂
𝜕𝜀𝑗

)

𝜀̇𝑗 +
(

𝜏𝑗 − 𝜌0
𝜕𝜓̂
𝜕𝛾𝑗

)

𝛾𝑗

]

= 𝜉 + 𝜌0
𝜕𝜓̂
𝜕𝛿𝑝

̇𝛿𝑝

+ 𝜌0
3
∑

𝑗=1

[

𝜕𝜓̂
𝜕𝜀𝑝𝑗

𝜀𝑝𝑗 + 𝜌0
𝜕𝜓̂
𝜕𝛾𝑗

𝛾𝑗 +
𝜕𝜓̂
𝜕𝑛𝑗

𝑛𝑗

]

+  𝑖 ∶
◦
 𝑖 .

(34)

et us assume that the elastic response of the body is that of a Green
lastic solid. Therefore, the total stress attributes can be written in
erms of derivatives of the Helmholtz potential function with respect
o the total strain attributes as

= 𝜌0
𝜕𝜓̂
𝜕𝛿
, (35a)

𝜎1 + 𝜎2 = 𝜌0
𝜕𝜓̂
𝜕𝜀1

, (35b)

1 + 2𝜎2 = 𝜌0
𝜕𝜓̂
𝜕𝜀2

, (35c)

𝑗 = 𝜌0
𝜕𝜓̂
𝜕𝛾𝑗

, 𝑗 = 1, 2, 3. (35d)

with 𝜎3 = −(𝜎1+𝜎2) and 𝜀3 = −(𝜀1+𝜀2). With this assumption describing
the elastic response of a body, Eq. (34) reduces to

𝜉 + 𝜌0
𝜕𝜓̂
𝜕𝛿𝑝

̇𝛿𝑝 + 𝜌0
3
∑

𝑗=1

[

𝜕𝜓̂
𝜕𝜀𝑝𝑗

𝜀𝑝𝑗 + 𝜌0
𝜕𝜓̂
𝜕𝛾𝑗

̇𝛾𝑗 +
𝜕𝜓̂
𝜕𝑛𝑗

𝑛𝑗

]

+  𝑖 ∶
◦
 𝑖 = 0. (36)

Now to determine evolution equations for the plastic strain rates and
the internal state variables, we apply a principle of maximum rate of
dissipation. According to this criterion, of all the admissible values
for the plastic velocity gradient 𝑝, anisotropy parameters 𝑛𝑗 , and co-
rotational rate of the internal state variable

◦
 𝑖 satisfying the reduced

rate of dissipation constraint (36), the ones that maximize the rate of

4 Often termed as a microstress.
 i

8 
dissipation 𝜉 will govern the evolution of a natural configuration 𝜅̃𝑝.
Note that if the anisotropy parameters 𝑢, 𝑣 and 𝑤 were considered
to be constants, i.e., if evolution of anisotropy during a plastic defor-
mation process were not to be considered, then one could carry out
a maximization of 𝜉 with respect to the variables listed in 𝑙̇ 𝑝 indi-
idually, instead of the plastic velocity gradient 𝑝 or its components.

However, in this case, components of the plastic velocity gradient need
to be expressed in terms of the plastic strain-rate attributes and the
anisotropy parameters before carrying out the optimization process.
This is achieved by inverting the relation (22), which yields

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑝11
𝑝22
𝑝33
𝑝23
𝑝13
𝑝12

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑛1 2𝑛1 𝑛1 0 0 0
𝑛2 −𝑛2 𝑛2 0 0 0
𝑛3 −𝑛3 −2𝑛3 0 0 0
0 0 0 𝑏𝑝∕𝑐𝑝 0 0
0 0 0 0 𝑎𝑝∕𝑐𝑝 −𝑎𝑝𝛾𝑝1∕𝑐

𝑝

0 0 0 0 0 𝑎𝑝∕𝑏𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛿̇𝑝

𝜀̇𝑝1
𝜀̇𝑝2
𝛾̇𝑝1
𝛾̇𝑝2
𝛾̇𝑝3

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

. (37)

Note that the relationships between the components of 𝑝 and the shear
strain rates 𝛾̇𝑝𝑖 do not involve the anisotropy parameters. Therefore, for
the shear modes of deformation, it is reasonable to carry out the maxi-
mization of 𝜉 with respect to the strain rate attributes 𝛾̇𝑝𝑖 . However, this
cannot be done for the dilatation and squeeze modes of deformation. In
these cases, an optimization process must be carried out explicitly with
respect to the components of 𝑝, specifically 𝑝11, 

𝑝
22 and 𝑝33. Here we

have considered that the volume of a body changes during plastic defor-
mation. Therefore, the optimization process is executed with only the
reduced rate of dissipation constraint (36). In case of metal plasticity,
it is often considered that the plastic deformation process is volume-
preserving, i.e., 𝛿̇𝑝 = 0. This condition enters into the constitutive model
as an additional constraint whenever a volume-preserving motion is
considered.

The maximization process can be worked out using two different
methods depending on the nature of the rate of dissipation function.
If 𝜉 is assumed to be a smooth function, then the optimization process
can be carried out using a standard Lagrange multiplier technique with
respect to the components of 𝑝, the anisotropy parameters 𝑛𝑗 , and a
co-rotational rate of the internal state variables

◦
 𝑖 with 𝜉 being the

objective function and Eq. (36) acting as a constraint. A smooth rate of
dissipation function is typically exhibited by materials that do not have
a definite yield surface and possess creep-like behavior, often denoted
as being viscoplastic. Details of this maximization process are provided
in Appendix. Using a Lagrange multiplier technique to maximize 𝜉, we
obtain

𝜕𝜉
𝜕𝛿̇𝑝

= −𝜆 𝜌0
𝜕𝜓̂
𝜕𝛿𝑝

;
𝜕𝜉
𝜕𝜀̇𝑝𝑗

= −𝜆 𝜌0
𝜕𝜓̂
𝜕𝜀𝑝𝑗

;
𝜕𝜉
𝜕𝛾̇𝑝𝑗

= −𝜆 𝜌0
𝜕𝜓̂
𝜕𝛾𝑝𝑗

(38a)

𝜕𝜉
𝜕𝑛𝑗

= −𝜆 𝜌0
𝜕𝜓̂
𝜕𝑛𝑗

(38b)

𝜕𝜉

𝜕
◦
 𝑖

= −𝜆 𝑖 (38c)

where 𝜆 = 𝜆∕(1+𝜆) with 𝜆 being a Lagrange multiplier to be determined
by substituting Eqs. (38a), (38b) and (38c) into the reduced rate of
dissipation constraint (36). Thus, 𝜆 can be obtained as

𝜆 = 1
𝜉

[

𝛿̇𝑝
𝜕𝜉
𝜕𝛿̇𝑝

+
3
∑

𝑗=1

(

𝜀̇𝑝𝑗
𝜕𝜉
𝜕𝜀̇𝑝𝑗

+ 𝛾̇𝑝𝑗
𝜕𝜉
𝜕𝛾̇𝑝𝑗

+ 𝑛𝑗
𝜕𝜉
𝜕𝑛𝑗

)

+
𝜕𝜉

𝜕
◦
 𝑖

∶
◦
 𝑖

]

.

(39)

learly, the evolution equations (Eqs. (38a)–(38c)) for the plastic strain
ttributes, anisotropy parameters, and the internal state variables are a
et of implicit equations. In the above derivation, the rate of dissipation

s maximized by keeping the stress attributes fixed while the strain rate
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attributes and other kinematic variables are allowed to vary. It is pos-
sible to derive explicit evolution equations for the kinematic variables
if the condition is reversed, i.e., their conjugate kinetic variables are
allowed to vary while the strain attributes and other kinematic vari-
ables are held fixed. This inversion is typically difficult for the plastic
strain attributes and the associated stress unless a special form for the
Helmholtz potential function 𝜓 is assumed. Moreover, the evolution
equations obtained thus far helps us to identify the thermodynamic
conjugates corresponding to the anisotropy parameters 𝑛𝑗 . If 𝑚𝑗 denotes
the microforce responsible for the change in anisotropy parameter 𝑛𝑗 ,
then in view of Eq. (38b), 𝑚𝑗 can be defined as 𝑚𝑗 ..= 𝜌0 𝜕𝜓̂∕𝜕𝑛𝑗 .

Because Eq. (20) is valid for the revised definition of strain at-
ributes for anisotropic materials, it can be concluded that the dif-
erence between the total strain attributes and their corresponding
lastic counterparts represents the elastic strain attributes or their
inear combinations. Therefore, it is reasonable to assume that the
elmholtz potential function has the form

= 𝜓̂(𝑙 , 𝑙 𝑝 , 𝑛𝑗 ) =
1
2

[

𝑁00 𝑔00(𝑛𝑗 ) (𝛿 − 𝛿𝑝)2

+
3
∑

𝑖=1
𝑁0𝑖 𝑔𝑜𝑖(𝑛𝑗 ) (𝛿 − 𝛿𝑝) (𝜀𝑖 − 𝜀

𝑝
𝑖 )

+
3
∑

𝑖=1
𝑁0(𝑖+3) 𝑔0(𝑖+3)(𝑛𝑗 ) (𝛿 − 𝛿𝑝) (𝛾𝑖 − 𝛾

𝑝
𝑖 )

+
3
∑

𝑖,𝑗=1
𝑖≤𝑗

𝑁𝑖𝑗 𝑔𝑖𝑗 (𝑛𝑗 ) (𝜀𝑖 − 𝜀
𝑝
𝑖 ) (𝜀𝑗 − 𝜀

𝑝
𝑗 )

+
3
∑

𝑖,𝑗=1
𝑁𝑖(𝑗+3) 𝑔𝑖(𝑗+3)(𝑛𝑗 ) (𝜀𝑖 − 𝜀

𝑝
𝑖 ) (𝛾𝑗 − 𝛾

𝑝
𝑗 )

+
3
∑

𝑖,𝑗=1
𝑖≤𝑗

𝑁(𝑖+3)(𝑗+3) (𝛾𝑖 − 𝛾
𝑝
𝑖 ) (𝛾𝑗 − 𝛾

𝑝
𝑗 )

]

.

(40)

where the 𝑁 ’s are material parameters and the 𝑔’s are functions of the
anisotropy parameters 𝑛𝑗 . Here a decoupling of contributions from the
anisotropy parameters and the strain attributes to the Helmholtz poten-
tial function is possible because the total and plastic strain attributes are
related to components of the velocity gradient  and the plastic velocity
radient 𝑝 through the same encoding/decoding maps,5 respectively.

The material parameters 𝑁 are not all independent. This form for 𝜓
leads to a Green elastic solid (i.e., hyperelastic) response. With this
assumed form for the Helmholtz potential function, the stress attributes
can be written as

𝜋 = 𝜌0
𝜕𝜓̂
𝜕𝛿

= −𝜌0
𝜕𝜓̂
𝜕𝛿𝑝

;

𝑗 = 𝜌0
𝜕𝜓̂
𝜕𝜀𝑗

= −𝜌0
𝜕𝜓̂
𝜕𝜀𝑝𝑗

;

𝑗 = 𝜌0
𝜕𝜓̂
𝜕𝛾𝑗

= −𝜌0
𝜕𝜓̂
𝜕𝛾𝑝𝑗

.

(41)

ubstituting these relations into the reduced rate of dissipation equa-
ion (36), we obtain

𝛿̇𝑝 +
3
∑

𝑗=1

(

𝜎𝑗 𝜀̇
𝑝
𝑗 + 𝜏𝑗 𝛾̇

𝑝
𝑗 − 𝑚𝑗 𝑛𝑗

)

−  𝑖 ∶
◦
 𝑖 = 𝜉. (42)

5 The encoding/decoding map that relates the total strain attributes to
he velocity gradient  involves the total stretch components 𝑎, 𝑏 and 𝑐,
hereas their plastic counterparts are used in the map between plastic strain
ttributes and the components of 𝑝. However, this difference does not deter
s from decoupling the contribution of anisotropy parameters from that of the
train attributes, as the stretch components are used in expressing only the
hear strain attributes in terms of their relevant components from the velocity
radient. These components, in turn, are free from the effects of an evolving
nisotropy.
 a

9 
ecause the reduced rate of dissipation criterion has now been ex-
ressed as a product of the kinematic and their conjugate kinetic
ttributes, it is now possible to carry out the maximization process with
espect to either the set of kinematic variables, or their conjugate ki-
etic variables. Thereby, one can now derive a set of explicit evolution
quations for the plastic strain attributes, anisotropy parameters, and
he internal state variables.

Before deriving explicit evolution equations for the kinematic vari-
bles, we need to talk about the yield criterion of a material in this
ramework. Following the arguments of Srinivasa (2010) and Paul and
reed (2021), in view of the reduced rate of dissipation criterion (42),
he yield criterion can be written as

(𝑙𝑘𝑚) ..= max
𝑙𝑘𝑚≠𝟎

𝜋 𝛿̇𝑝 +
∑3
𝑗=1

(

𝜎𝑗 𝜀̇
𝑝
𝑗 + 𝜏𝑗 𝛾̇

𝑝
𝑗 − 𝑚𝑗 𝑛𝑗

)

−  𝑖 ∶
◦
 𝑖

𝜉(𝑙 , 𝑙 𝑝 , 𝑙̇ 𝑝 )
= 1 (43)

where 𝑙𝑘𝑚 denotes the list of kinematic variables such that

𝑙𝑘𝑚 =
{

𝛿̇𝑝 𝜀̇𝑝1 𝜀̇𝑝2 𝜀̇𝑝3 𝛾̇𝑝1 𝛾̇𝑝2 𝛾̇𝑝3 𝑛1 𝑛2 𝑛3
◦
 𝑖

}

.

If the yield function 𝑌 (𝑙𝑘𝑚) < 1 for some values of 𝑙𝑘𝑚, then the reduced
rate of dissipation equation is violated, and therefore, the response of
a material is elastic. One can easily show that this yield function 𝑌 (𝑙𝑘𝑚)
is convex in the 𝑙𝑘𝑚 space.6

Let us now consider the case where the strain attributes, anisotropy
parameters and the internal state variables are held fixed, while their
corresponding kinetic variables are allowed to vary. Let us also define
a list of variables 𝑙𝑘𝑡 that contains all the kinetic variables as

𝑙𝑘𝑡 =
{

𝜋 𝜎1 𝜎2 𝜎3 𝜏1 𝜏2 𝜏3 𝑚1 𝑚2 𝑚3  𝑖
}

.

Note that here we consider the internal state variable to be of kinetic
nature whereas its kinematic, thermodynamic conjugate is derived from
employing the maximum rate of dissipation criterion. In this case, the
yield function can be defined as

𝑌 (𝑙𝑘𝑡) ..= max
𝑙𝑘𝑡≠𝟎

𝜋 𝛿̇𝑝 +
∑3
𝑗=1

(

𝜎𝑗 𝜀̇
𝑝
𝑗 + 𝜏𝑗 𝛾̇

𝑝
𝑗 − 𝑚𝑗 𝑛𝑗

)

−  𝑖 ∶
◦
 𝑖

𝜉(𝑙 , 𝑙 𝑝 , 𝑙̇ 𝑝 )
= 1. (44)

One can also show that the yield function, defined in this way, is
convex in the 𝑙𝑘𝑡 space. Now, a routine calculation to maximize the
rate of dissipation function 𝜉 with the reduced rate of dissipation
constraint (42), taken with respect to the kinetic variables listed in 𝑙𝑘𝑡,
leads to

𝛿̇𝑝 = 𝜇
𝜕𝜉
𝜕𝜋
, 𝜀̇𝑝𝑖 = 𝜇

𝜕𝜉
𝜕𝜎𝑖

, 𝛾̇𝑝𝑖 = 𝜇
𝜕𝜉
𝜕𝜏𝑖

,

𝑛𝑗 = 𝜇
𝜕𝜉
𝜕𝑚𝑗

,
◦
 𝑖 = 𝜇

𝜕𝜉
𝜕 𝑖

(45)

where 𝜇 is the consistency parameter that satisfies the condition that
= 0 whenever 𝑌 (𝑙𝑘𝑡) < 1. The consistency parameter 𝜇 can be

etermined by substituting the plastic strain-rate attributes 𝑙̇ 𝑝 , the
nisotropy parameters 𝑛𝑗 , and the co-rotational rate of internal state
ariable

◦
 𝑖 into the reduced rate of dissipation equation (42). Thus,

q. (45) provides explicit expressions for the evolution of the kinematic
ariables. Geometrically, Eq. (45) implicates that the stress attributes
ie along normals to the dissipation function at their corresponding
train rate attributes, whereas the microstresses 𝑚𝑗 and  𝑖 that asso-
iate with the anisotropy parameters 𝑛𝑗 and internal state variables
𝑖 lie along normals to the dissipation function at their corresponding

inematic conjugates. For materials that exhibit a yielding behavior,
he dissipation function is no longer differentiable at 𝑙𝑘𝑚 = 𝟎. Therefore,
Lagrange multiplier method cannot be used to maximize the rate of

issipation function for those materials. In that case, a standard method

6 For a detailed derivation, see Paul and Freed (2021, § 3.5). The convexity
or the additional variables can be established following a routine calculation
s delineated in the mentioned article.
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of convex analysis can be applied to show that the kinetic variables 𝑙𝑘𝑡
re along the normal cone to the convex hull C𝑙𝑘𝑚 at 𝑙𝑘𝑚, where 𝑙𝑘𝑚
enotes a set of kinematic variables that satisfies the yield condition
(𝑙𝑘𝑚) = 1 with the convex hull C𝑙𝑘𝑚 being defined as

𝑙𝑘𝑚
..= 𝜆0 𝛿̇

𝑝 +
3
∑

𝑗=1

(

𝜆𝑗 𝜀̇
𝑝
𝑗 + 𝜆𝑗+3 𝛾̇

𝑝
𝑗 + 𝜆𝑗+6 𝑛𝑗

)

+ 𝜆10
◦
 𝑖 .

f 𝑙𝑘𝑚 is another set of kinematic variables satisfying 𝑌 (𝑙𝑘𝑚) < 1, then
he flow rule can be written as

( ̇̂𝛿𝑝−𝛿̇𝑝)+
3
∑

𝑗=1

[

𝜎𝑗 ( ̇̂𝜀𝑗 − 𝜀̇𝑗 ) + 𝜏𝑗 ( ̇̂𝛾𝑗 − 𝛾̇𝑗 ) + 𝑚𝑗 (𝑛̂𝑗 − 𝑛𝑗 ) +  ∶ (
◦

̂ 𝑖 −
◦
 𝑖 )

]

≥ 0.

(46)

ecause it can be shown that the yield function is convex in the kinetic
ariable-space, it is also possible to obtain the normality rule in terms
f the kinetic variables. It is also worth noting that the above derivation
f the evolution equations holds for the internal state variables of other
inds (i.e., scalars or vectors).

.1. Examples

In this section, we demonstrate how internal state variables and a
lastically-induced anisotropy enter into our framework by considering
lassical 𝐽2 - plasticity. Specifically, we consider two problems. In the
irst problem, we examine the deformation of an elastic–plastic mate-
ial that exhibits kinematic hardening. Here we further consider that
he material behavior remains isotropic throughout the deformation
rocess. In the second problem, we consider the plastic deformation
f a material in which its anisotropy evolves with the deformation.
lthough in real-life problems, it is quite common to observe these

wo processes occurring simultaneously, here we have considered them
eparately for the sake of simplicity.
inematic hardening

Let us consider an elastic–plastic material that obeys a 𝐽2 yield
riterion and exhibits a Prager-like kinematic hardening (Prager, 1955).
he material behavior is assumed to be isotropic throughout the de-
ormation process, i.e., 𝑛𝑗 = 1. A Prager hardening rule assumes that
he yield surface does not change in size and shape, but undergoes a
ranslation in the direction of the strain increment. To keep track of
he translation of this yield surface, we need to specify a backstress
ensor that is incorporated in our model through a kinetic, internal,
tate variable. Let 𝐛 denote a tensor-valued, internal, state variable
hat represents a backstress in the current configuration 𝜅𝑡. One can
ransfer the backstress tensor into the configuration 𝜅̃𝑝 using a suitable
ull back operation and define its attributes corresponding to the seven
odes of deformation in a similar fashion as in Eq. (14). Let 𝛽𝜋 , 𝛽𝜎𝑖

nd 𝛽𝜏𝑖 denote the backstress attributes corresponding to the dilatation,
queeze and shear modes of deformation, respectively. Let us further
enote the rate of dissipation associated with the backstress tensor 𝐛 by
. It is apparent that 𝛺 is a function of the plastic strain rate attributes.

ince 𝐽2 plasticity considers a volume-preserving plastic deformation,
he functional form of 𝛺 can be written as

= 𝛺(𝜀̇𝑝𝑖 , 𝛾̇
𝑝
𝑖 ), 𝑖 = 1, 2, 3. (47)

𝐽2 yield criterion is obtained through an appropriate choice for the
ate of dissipation function 𝜉. Let us consider the rate of dissipation
unction as

= 𝑘′

√

√

√

√

3
∑

𝑖=1
(𝜀̇𝑝

2

𝑖 + 𝛾̇𝑝
2

𝑖 ) + 𝑘′𝛺(𝜀̇𝑝𝑖 , 𝛾̇
𝑝
𝑖 ). (48)

We further consider the special form for the Helmholtz potential func-

tion given in Eq. (40). Now, the stress attributes can be obtained from

10 
Eqs. (41) and (38a) as

𝜎𝑖 =
𝑘𝜀̇𝑝𝑖

√

∑3
𝑖=1(𝜀̇

𝑝2
𝑖 + 𝛾̇𝑝

2

𝑖 )
+ 𝑘 𝜕𝛺

𝜕𝜀̇𝑝𝑖
; 𝜏𝑖 =

𝑘𝛾̇𝑝𝑖
√

∑3
𝑖=1(𝜀̇

𝑝2
𝑖 + 𝛾̇𝑝

2

𝑖 )
+ 𝑘 𝜕𝛺

𝜕𝛾̇𝑝𝑖
(49)

here 𝑘 = 𝜇 𝑘′ with 𝜇 being a consistency parameter. Since 𝛺 is the
rate of dissipation function associated with the backstress tensor, its
derivatives with respect to the plastic strain rate attributes give us the
corresponding backstress attributes, i.e.,

𝛽𝜎𝑖 = 𝑘 𝜕𝛺
𝜕𝜀̇𝑝𝑖

; 𝛽𝜏𝑖 = 𝑘 𝜕𝛺
𝜕𝛾̇𝑝𝑖

. (50)

Thus, Eq. (49) can be alternatively written as

𝜎𝑖 =
𝑘𝜀̇𝑝𝑖

√

∑3
𝑖=1(𝜀̇

𝑝2
𝑖 + 𝛾̇𝑝

2

𝑖 )
+ 𝛽𝜎𝑖 ; 𝜏𝑖 =

𝑘𝛾̇𝑝𝑖
√

∑3
𝑖=1(𝜀̇

𝑝2
𝑖 + 𝛾̇𝑝

2

𝑖 )
+ 𝛽𝜏𝑖 . (51)

From Eq. (51), the yield criterion can be written as
√

√

√

√

3
∑

𝑖=1

[

(𝜎𝑖 − 𝛽𝜎𝑖 )2 + (𝜏𝑖 − 𝛽𝜏𝑖 )2
]

= 𝑘 ⟹

√

∑3
𝑖=1

[

(𝜎𝑖 − 𝛽𝜎𝑖 )2 + (𝜏𝑖 − 𝛽𝜏𝑖 )2
]

𝑘
= 1.

(52)

It is evident that Eq. (52) represents the 𝐽2 yield criterion with Prager’s
kinematic hardening rule in our framework. The size and shape of the
yield surface remains constant while it translates in the six-dimensional
stress attributes space according to the evolution of the backstress
attributes given in Eq. (50).

Note that in this example, we did not need to consider a co-
rotational rate of the internal state variable as the internal variable is
embedded in the same configuration in which constitutive equations
are written. In fact, in our case, the plastic strain rate attributes act as
the thermodynamic conjugates of the attributes of the internal variable
(backstress). However. the same will not be true whenever a tensor-
valued internal variable of kinematic nature is considered. In that case,
the rate of dissipation function must be expressed in terms of the
co-rotational rates of the internal state variables.
Plastically-induced anisotropy

Let us consider an example of a plastically-induced anisotropy
within the 𝐽2 plasticity framework. For the sake of simplicity, here we
do not incorporate any internal state variable. In this case, the evolution
of both the plastic squeeze and shear strain rate attributes and, the
anisotropy parameters contributes to the rate of dissipation function.
Therefore, the rate of dissipation function is chosen as

𝜉 = 𝑘′

√

√

√

√

3
∑

𝑖=1
(𝜀̇𝑝

2

𝑖 + 𝛾̇𝑝
2

𝑖 ) + 𝑡′

√

√

√

√

3
∑

𝑖=1
𝑛2𝑖 . (53)

where 𝑡′
√

∑3
𝑖=1 𝑛

2
𝑖 is the additional rate of dissipation caused by evolv-

ing anisotropy. Recall that a coupling exists between the plastic squeeze
strain rate attributes and the anisotropy parameters. Following the
procedure in Appendix, the stress attributes can be obtained as

𝜎𝑖 =
𝑘 𝜀̇𝑝𝑖

√

∑3
𝑟=1(𝜀̇

𝑝2
𝑟 + 𝛾̇𝑝

2
𝑟 )

+ 𝑡
√

∑3
𝑟=1 𝑛2𝑟

⋅
3
∑

𝑗=1
𝑛𝑗
𝜕𝑛𝑗
𝜕𝜀̇𝑝𝑖

; (54a)

𝜏𝑖 =
𝑘 𝛾̇𝑝𝑖

√

∑3
𝑟=1(𝜀̇

𝑝2
𝑟 + 𝛾̇𝑝

2
𝑟 )

; (54b)

𝑚𝑖 =
𝑘

√

∑3
𝑟=1(𝜀̇

𝑝2
𝑟 + 𝛾̇𝑝

2
𝑟 )

3
∑

𝑗=1
𝜀̇𝑝𝑗
𝜕𝜀̇𝑝𝑗
𝜕𝑛𝑖

+
𝑡 𝑛𝑖

√

∑3
𝑗=1 𝑛

2
𝑗

(54c)

where 𝑘 = 𝜇 𝑘′ and 𝑡 = 𝜇 𝑡′ with 𝜇 being a consistency parameter.
Since it is reasonable to assume that the functional dependence between
the anisotropy parameters and the plastic squeeze strain rate attributes
are known a priori, the corresponding stress attributes can be easily
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determined. It is interesting to note that the squeeze stress attributes
and the microstresses, 𝑚𝑖 both contain terms associated with the two
omponents of the assumed rate of dissipation function. This is a
onsequence of the coupling between anisotropy parameters and the
lastic squeeze strain rate attributes. From Eq. (54a), one can write the
ield criterion as

3

𝑖=1

√

(𝜎𝑖 − 𝛽𝑖)2 + 𝜏2𝑖 = 𝑘 ⟹

∑3
𝑖=1

√

(𝜎𝑖 − 𝛽𝑖)2 + 𝜏2𝑖
𝑘

= 1 (55)

here 𝛽𝑖 = 𝑡
√

∑3
𝑟=1 𝑛2𝑟

∑3
𝑗=1 𝑛𝑗

𝜕𝑛𝑗
𝜕𝜀̇𝑝𝑖

. The above yield criterion im-

plies that for the assumed rate of dissipation function, the material
undergoes a combined isotropic and kinematic hardening; a plastically-
induced anisotropy results in a kinematic hardening whereas the evo-
lution of the plastic squeeze and shear strain rate attributes leads to an
isotropic hardening.
5. Summary

In this paper, we incorporated internal state variables that rep-
resent macroscopic manifestations of microstructural properties and
plastically-induced anisotropy into our previously developed constitu-
tive model. To develop this model, we use scalar conjugate stress/strain
base pairs that arise from a QR decomposition of the deformation
gradient. This upper-triangular decomposition results in an orthogonal
rotation  and an upper-triangular Laplace stretch  that is further
decomposed into elastic and plastic components. It has been shown
that the intermediate configuration 𝜅̃𝑝, which is related to the reference
configuration of the body through the plastic Laplace stretch  𝑝, repre-
ents a macroscopic manifestation of the substructure of a constituent
aterial. An appropriate co-rotational rate for a kinematic internal

tate variable 𝑖 (in the configuration 𝜅̃𝑝) has been considered based
n this intermediate configuration. Due to its importance in the context
f plastically-induced anisotropy, here we have also considered the
volution of anisotropy during plastic deformation in our constitutive
odel. Traditionally, such evolution is considered through the internal

tate variable, whereas, in our case, this evolution is incorporated by
onsidering the anisotropy parameters, used in an encoding/decoding
ap, as variables. Finally, a constitutive model for all the plastic strain

ttributes, anisotropy parameters, and internal state variables has been
btained by using a maximum rate of dissipation criterion.
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ppendix. Derivation of flow rules using a maximum rate of dis-
ipation criterion

From Eq. (27), we observe that the anisotropy parameters are only
ssociated with the dilatational and squeeze strain rates when they are
xpressed in terms of the components of the plastic velocity gradient
𝑝, or vice versa. Moreover, these strain rates are related to only three
11 
omponents of plastic Laplace stretch, 𝑝11, 
𝑝
22 and 𝑝33. Therefore, it is

easonable to carry out the maximization process with respect to these
hree components of the plastic Laplace stretch, the shear strain rates
𝛾̇𝑗 , and the co-rotational rates of the internal state variables.

Now, from Eq. (37), the components of Laplace stretch in terms of
the dilatational and squeeze strain rates and the anisotropy parameters
can be written as

𝑝11 = 𝑛1(𝛿̇𝑝 + 2𝜀̇𝑝1 + 𝜀̇
𝑝
2); (A.1a)

𝑝22 = 𝑛2(𝛿̇𝑝 − 𝜀̇
𝑝
1 + 𝜀̇

𝑝
2); (A.1b)

𝑝33 = 𝑛3(𝛿̇𝑝 − 𝜀̇
𝑝
1 − 2𝜀̇𝑝2). (A.1c)

The Lagrangian for our constrained optimization problem can therefore
be written as

L ..= 𝜉 + 𝜆

(

𝜉 + 𝜌0
𝜕𝜓̂
𝜕𝛿𝑝

̇𝛿𝑝 + 𝜌0
3
∑

𝑗=1

[

𝜕𝜓̂
𝜕𝜀𝑝𝑗

𝜀𝑝𝑗 + 𝜌0
𝜕𝜓̂
𝜕𝛾𝑗

𝛾𝑗 +
𝜕𝜓̂
𝜕𝑛𝑗

𝑛𝑗

]

+  𝑖 ∶
◦
 𝑖

)

.

(A.2)

ow the condition for maximizing the Lagrangian L with respect to the
omponent of plastic velocity gradient 𝑝11 is given as

𝜕L
𝜕𝑝11

= 0

⟹ (1 + 𝜆)
𝜕𝜉
𝜕𝑝11

+ 𝜌0 𝜆

(

𝜕𝜓̂
𝜕𝛿𝑝

𝜕𝛿̇𝑝

𝜕𝑝11
+
𝜕𝜓̂
𝜕𝜀𝑝1

𝜕𝜀̇𝑝1
𝜕𝑝11

+
𝜕𝜓̂
𝜕𝜀𝑝2

𝜕𝜀̇𝑝2
𝜕𝑝11

+
𝜕𝜓̂
𝜕𝑛1

𝜕𝑛1
𝜕𝑝11

)

= 0.

(A.3)

ote that the components 𝑝11,
𝑝
22 and 𝑝33 do not explicitly depend

upon the third squeeze strain rate 𝜀̇𝑝3. This is due to the fact that
the squeeze strain rate 𝜀̇𝑝3 can be expressed as the linear combination
of the other two. However, it does not pose any issue regarding the
determination of an evolution equation for 𝜀𝑝3. Because 𝑝11 depends
upon the strain rates and the anisotropy parameter 𝑛1, Eq. (A.3) reduces
to

(1 + 𝜆)

[

𝜕𝜉
𝜕𝛿̇𝑝

𝜕 ̇𝛿𝑝

𝜕𝑝11
+
𝜕𝜉
𝜕𝜀̇𝑝1

𝜕𝜀̇𝑝1
𝜕𝑝11

+
𝜕𝜉
𝜕𝜀̇𝑝2

𝜕𝜀̇𝑝2
𝜕𝑝11

+
𝜕𝜉
𝜕𝑛1

𝜕𝑛1
𝜕𝑝11

]

+ 𝜌0 𝜆
𝜕𝜓̂
𝜕𝛿𝑝

𝜕𝛿̇𝑝

𝜕𝑝11

+ 𝜌0 𝜆
𝜕𝜓̂
𝜕𝜀𝑝1

𝜕𝜀̇𝑝1
𝜕𝑝11

+ 𝜌0 𝜆
𝜕𝜓̂
𝜕𝜀𝑝2

𝜕𝜀̇𝑝2
𝜕𝑝11

+ 𝜌0 𝜆
𝜕𝜓̂
𝜕𝑛1

𝜕𝑛1
𝜕𝑝11

= 0.

(A.4)

ow substituting derivatives of the strain rates and the anisotropy
arameter taken with respect to 𝑝11 into Eq. (A.4), we obtain

1
𝑛1

[

(1 + 𝜆)
𝜕𝜉
𝜕𝛿̇𝑝

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝛿𝑝

]

+ 1
2𝑛1

[

(1 + 𝜆)
𝜕𝜉
𝜕𝜀̇𝑝1

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝜀𝑝1

]

+ 1
𝑛1

[

(1 + 𝜆)
𝜕𝜉
𝜕𝜀̇𝑝2

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝜀𝑝2

]

+ 1
𝛿̇𝑝 + 2𝜀̇𝑝1 + 𝜀̇2

[

(1 + 𝜆)
𝜕𝜉
𝜕𝑛1

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝑛1

]

= 0.

(A.5)

imilarly, the condition for maximizing the Lagrangian L with respect
o 𝑝22 and 𝑝33 are given as

1
𝑛2

[

(1 + 𝜆)
𝜕𝜉
𝜕𝛿̇𝑝

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝛿𝑝

]

− 1
𝑛2

[

(1 + 𝜆)
𝜕𝜉
𝜕𝜀̇𝑝1

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝜀𝑝1

]

+ 1
𝑛2

[

(1 + 𝜆)
𝜕𝜉
𝜕𝜀̇𝑝2

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝜀𝑝2

]

+ 1
𝛿̇𝑝 − 𝜀̇𝑝1 + 𝜀̇2

[

(1 + 𝜆)
𝜕𝜉
𝜕𝑛1

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝑛2

]

= 0

(A.6)

nd

1
𝑛3

[

(1 + 𝜆)
𝜕𝜉
𝜕𝛿̇𝑝

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝛿𝑝

]

− 1
𝑛3

[

(1 + 𝜆)
𝜕𝜉
𝜕𝜀̇𝑝1

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝜀𝑝1

]

− 1
[

(1 + 𝜆)
𝜕𝜉
𝑝 + 𝜌0 𝜆

𝜕𝜓
𝑝

]

+ 1
𝑝 𝑝

[

(1 + 𝜆)
𝜕𝜉

+ 𝜌0 𝜆
𝜕𝜓

]

= 0.

2𝑛3 𝜕𝜀̇2 𝜕𝜀2 𝛿̇ − 𝜀̇1 − 2𝜀̇2 𝜕𝑛1 𝜕𝑛2
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The maximization process for the shear strain rates are rather straight-
forward. As they are not related to the components of 𝑝 through the
anisotropy parameters, one can carry out the maximization process
directly with respect to the shear strain rates 𝛾̇𝑝𝑗 . A routine calculation
leads to

(1 + 𝜆)
𝜕𝜉
𝜕𝛾̇𝑝𝑗

= −𝜆 𝜌0
𝜕𝜓
𝜕𝛾𝑝𝑗

. (A.8)

Similarly, an evolution equation for the anisotropy parameters and the
internal state variables are obtained as

(1 + 𝜆)
𝜕𝜉
𝜕𝑛𝑗

= −𝜆 𝜌0
𝜕𝜓
𝜕𝑛𝑗

(A.9)

and

(1 + 𝜆)
𝜕𝜉

𝜕
◦
 𝑖

= −𝜆 . (A.10)

In view of Eq. (A.9), Eqs. (A.5), (A.6) and (A.7) can be collectively
rewritten as

𝑓1𝑗 (𝑛𝑗 )
[

(1 + 𝜆)
𝜕𝜉
𝜕𝛿̇𝑝

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝛿𝑝

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑞1(𝛿𝑝 ,𝛿̇𝑝)

+𝑓2𝑗 (𝑛𝑗 )

[

(1 + 𝜆)
𝜕𝜉
𝜕𝜀̇𝑝1

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝜀𝑝1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑞2(𝜀

𝑝
1 ,𝜀̇

𝑝
1)

+ 𝑓3𝑗 (𝑛𝑗 )

[

(1 + 𝜆)
𝜕𝜉
𝜕𝜀̇𝑝2

+ 𝜌0 𝜆
𝜕𝜓
𝜕𝜀𝑝2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑞3(𝜀

𝑝
2 ,𝜀̇

𝑝
2)

= 0

(A.11)

where 𝑓𝑖𝑗 ’s are functions of 𝑛𝑗 in accordance with Eq. (37). Notice
that for the reduced Eqs. (A.5), (A.6) and (A.7), their constituents
𝑞𝑖’s remain the same. Moreover, it is evident that Eq. (A.11) must
be satisfied for any variation of the dilatational and squeeze strain
attributes and their rates in order to maximize the Lagrangian L.

oreover, in each of the constituents of Eq. (A.11), 𝑞𝑖 depends on a
ertain mode of deformation, for example, the constituent 𝑞1 depends
nly on the dilatational mode of deformation. Because the dilatation
nd these squeeze modes of deformation are independent of each other,
ne can vary the functions 𝑞1, 𝑞2 and 𝑞3 arbitrarily such that Eq. (A.11)
s always satisfied. This is possible if and only if these constituents are
ndividually zero, i.e., 𝑞1(𝛿𝑝, 𝛿̇𝑝) = 𝑞2(𝜀

𝑝
1, 𝜀̇

𝑝
1) = 𝑞3(𝜀

𝑝
3, 𝜀̇

𝑝
3) = 0. Thus, the

ondition to maximize the Lagrangian L with respect to 𝑝11, 
𝑝
22 and

𝑝
33 can be written as

1 + 𝜆)
𝜕𝜉
𝜕𝛿̇𝑝

= −𝜌0 𝜆
𝜕𝜓
𝜕𝛿𝑝

;

1 + 𝜆)
𝜕𝜉
𝜕𝜀̇𝑝1

= −𝜌0 𝜆
𝜕𝜓
𝜕𝜀𝑝1

;

1 + 𝜆)
𝜕𝜉
𝜕𝜀̇𝑝2

= −𝜌0 𝜆
𝜕𝜓
𝜕𝜀𝑝2

.

(A.12)

Because the third squeeze mode satisfies the condition 𝜀𝑝3 = −(𝜀𝑝1 + 𝜀
𝑝
2)

and 𝜀̇𝑝3 = −(𝜀̇𝑝1 + 𝜀̇
𝑝
2), the evolution equation for 𝜀𝑝3 can be written as

(1 + 𝜆)
𝜕𝜉
𝜕𝜀̇𝑝3

= −𝜌0 𝜆
𝜕𝜓
𝜕𝜀𝑝3

. (A.13)
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